分析下等式的右边,少c和d
那么就用放缩法想办法让c和d在式子中消失
a^2/b+b^2/c+c^2/d+d^2/a
=(a^2/b)+(b^2/c+c^2/d+d^2/a)
≥(a^2/b)+(b+c+d)^2/(c+d+a)(柯西不等式)
=a^2/b+(4-a)^2/(4-b)(a+b+c+d=4)
=[a^2(4-b)+b(4-a)^2]/[b(4-b)]
=(4a^2+16b-8ab)/[b(4-b)]
=[(16b-4b^2)+(4a^2-8ab+4b^2)]/[b(4-b)]
=4+4(a-b)^2/[b(4-b)]
≥4+(a-b)^2(4/[b(4-b)]≥1等价于(b-2)^2≥0)