当前位置 :
【设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.】
1人问答
问题描述:

设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.

丛树洲回答:
  ∵x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,∴△=(-4m)2-4×2×(2m2+3m-2)≥0,可得m≤23,又x1+x2=2m,x1x2=2m2+3m−22,∴x12+x22=2( m−34) 2+78=2(34−m)2+78,∵m≤23,∴34-m≥34-23>0,∴...
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞