(1)
f(x)是增函数
下面证明:
定义域2x+1≥0,得x≥-1/2
任取-1/2≤x1<x2,
f(x2)-f(x1)=√(2x2+1)-√(2x1+1)
=2(x2-x1)/[√(2x2+1)+√(2x1+1)]
因为x1<x2
所以x2-x1>0,
又√(2x2+1)+√(2x1+1)>0
所以f(x2)-f(x1)>0
即f(x2)>f(x1)
所以f(x)是增函数
(2)
又(1)知f(x)在x≥-1/2为增函数
所以f(x)=√(2x+1)≥f(-1/2)=0
所以f(x)的最小值为0