在如图甲所示的半径为r的竖直圆柱形区域内,存在竖直向上的匀强磁场,磁感应强度大小随时间的变化关系为B=kt(k>0且为常量).
(1)将一由细导线构成的半径为r、电阻为R0的导体圆环水平固定在上述磁场中,并使圆环中心与磁场区域的中心重合.求在T时间内导体圆环产生的焦耳热.
(2)上述导体圆环之所以会产生电流是因为变化的磁场会在空间激发涡旋电场,该涡旋电场趋使导体内的自由电荷定向移动,形成电流.如图乙所示,变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,其电场线是在水平面内的一系列沿顺时针方向的同心圆(从上向下看),圆心与磁场区域的中心重合.在半径为r的圆周上,涡旋电场的电场强度大小处处相等,并且可以用E涡=
①若小球由静止经过一段时间加速,获得动能Em,求小球在这段时间内在真空细管道内运动的圈数;
②若在真空细管道内部空间加有方向竖直向上的恒定匀强磁场,小球开始运动后经过时间t0,小球与环形真空细管道之间恰好没有作用力,求在真空细管道内部所加磁场的磁感应强度的大小.