当前位置 :
设f属于C[a,b],D[a,b],a>0,证明:至少存在e属于(a,b)使f(b)-f(a)=ef'(e)ln(b/a).
1人问答
问题描述:

设f属于C[a,b],D[a,b],a>0,证明:至少存在e属于(a,b)使f(b)-f(a)=ef'(e)ln(b/a).

刘秉毅回答:
  证明:令g(x)=lnx,则f(x),g(x)在[a,b,]上满足Cauchy中值定理条件,所以,在(a,b)内至少存在一点e,使得   [f(b)-f(a)]/[lnb-lna]=f'(e)/(1/e),   即f(b)-f(a)=ef'(e)ln(b/a).
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞