当前位置 :
高二的一道数学题.设P是圆x^2+(y-2)^2=1上的一个动点,Q为双曲线x^2-y^2=1上的一个动点,则|PQ|的最小值为?要步骤说明.今天或明天或后天我会回来看。
1人问答
问题描述:

高二的一道数学题.

设P是圆x^2+(y-2)^2=1上的一个动点,Q为双曲线x^2-y^2=1上的一个动点,则|PQ|的最小值为?

要步骤说明.

今天或明天或后天我会回来看。

彭建训回答:
  设圆心是A.首先,明确一点,|PQ|要想达到最小值,P一定在AQ的连线上,因为,如果P不在这条连线上,假设在P'点,那么AQ=PA+PQ
数学推荐
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞