cosB+cosC+2a/﹙b+c﹚-4sin(A/2)
=2cos[(B+C)/2]cos[(B-C)/2]+2sinA/(sinB+sinC)-4sin(A/2)
=2cos[(B+C)/2]cos[(B-C)/2]+2sinA/2sin[(B+C)/2]cos[(B-C)/2]-4sin(A/2)
=2sin(A/2)cos[(B-C)/2]+4sin(A/2)cos(A/2)/2sin[(B+C)/2]cos[(B-C)/2]-4sin(A/2)
=2sin(A/2)cos[(B-C)/2]+4sin(A/2)cos(A/2)/2cos(A/2)cos[(B-C)/2]-4sin(A/2)
=2sin(A/2)cos[(B-C)/2]+2sin(A/2)/cos[(B-C)/2]-4sin(A/2)
=2sin(A/2){cos[(B-C)/2]+1/cos[(B-C)/2-2}
因为90>(B-C)/2>-90,所以cos[(B-C)/2]≥0
所以cos[(B-C)/2]+1/cos[(B-C)/2]≥2
cos[(B-C)/2]+1/cos[(B-C)/2-2≥0
又因为sinA/2>0
所以2sin(A/2){cos[(B-C)/2]+1/cos[(B-C)/2-2}≥0
所以cosB+cosC+2a/﹙b+c﹚≥4sin(A/2)