当前位置 :
用数学归纳法证明:1+122+132+…+1n2≥3n2n+1(n∈N*).
1人问答
问题描述:

用数学归纳法证明:1+122+132+…+1n2≥3n2n+1(n∈N*).

彭忠利回答:
  证明:当n=1时,结论成立;假设n=k时,不等式成立;当n=k+1时,左边≥3k2k+1+1(k+1)2,下证:3k2k+1+1(k+1)2≥3(k+1)2(k+1)+1,作差得3k2k+1+1(k+1)2−3(k+1)2(k+1)+1=k(k+2)(k+1)2(2k+1)(2k+3)>0,得结论成立,即...
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞