当前位置 :
已知A为平面β外一点,AO⊥β,AB、AC为β的两条斜线,B、C∈β,BO=2,CO=12,AB与β成角为θ1,AC与β成角为θ2,且θ1-θ2=45°,求AO的值
1人问答
问题描述:

已知A为平面β外一点,AO⊥β,AB、AC为β的两条斜线,B、C∈β,BO=2,CO=12,AB与β成角为θ1,AC与β成角为θ2,且θ1-θ2=45°,求AO的值

施伟回答:
  因为AO=BO*tanθ1=OC*tanθ2-----(1)而且θ1=θ2+45,   所以tan(θ2+45°)=6tanθ2,   由正切的二角和公式,(这里需要解一个分式方程,可以令tanθ2=X,然后解方程,注意θ2小于四十五度)可得tanθ2的值.   然侯代入(1)式,可得出AO的长度~   P.S.我身边没带笔纸,没法给呢详细计算啦,但是,我觉得这样你应该能够解出来了吧~!
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞