证明f'(a)=(x→a)lim[(x-a)(x-b)(x-c)-(a-a)(a-b)(a-c)]/(x-a)
=(x→a)lim(x-b)(x-c)=(a-b)(a-c)
f'(b)=(b-a)(b-c),f'(c)=(c-a)(c-b),
a/f'(a)+b/f'(b)+c/f'(c)
=a/[(a-b)(a-c)]+b/[(b-a)(b-c)]+c/[(c-a)(c-b))]
=-a(b-c)/[(a-b)(b-c)(c-a)]-b(c-a)/[(a-b)(b-c)(c-a)]-c(a-b)/[(a-b)(b-c)(c-a)]=(-ab+ac-bc+ab-ca+bc)/[(a-b)(b-c)(c-a)]=0/[(a-b)(b-c)(c-a)]=0