当前位置 :
【一道数学题,有关数列的已知各项均不为零的数列{ak}的前k项和为Sk,且Sk=(1/2)ak*a(k+1)(k∈N*)其中a1=1.是否存在实数a使得不等式(1/an)^a<2^(an)对于任意正整数n都成立?若存在,试求岀实数】
1人问答
问题描述:

一道数学题,有关数列的

已知各项均不为零的数列{ak}的前k项和为Sk,且Sk=(1/2)ak*a(k+1)(k∈N*)其中a1=1.是否存在实数a使得不等式(1/an)^a<2^(an)对于任意正整数n都成立?若存在,试求岀实数a的取值范围;若不存在,请说明理由.

ak我已经求出来了,ak=a^k,下来的就不会了……请高手指教,感激不尽

杜春彦回答:
  如果你的结果没错的话,下面这样做:   不等式两边去对数.a*lg(1/an)
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞