计算曲线积分:
∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy
其中L是在抛物线2x=πy^2上由点(0,0)到(π/2,1)的一段弧.
——————————————————————————————————————————
补线:
L1:x=π/2、逆时针方向、dx=0、由y=0变化到y=1
L2:y=0、逆时针方向、dy=0、由x=0变化到x=π/2
由于L是顺时针方向,现在设L⁻是L的逆时针方向
∮(L⁻+L1+L2)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy
=∫∫D[∂/∂x(1-2ysinx+3x^2y^2)-∂/∂y(2xy^3-y^2cosx)]dxdy、用Green公式
=∫∫D[(-2ycosx+6xy^2)-(6xy^2-2ycosx)]dxdy
=∫∫D(-2ycosx+6xy^2-6xy^2+2ycosx)dxdy
=0
而∫(L1)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy
=∫(0→1)[0+1-2y+3(π/2)^2y^2]dy
=∫(0→1)[1-2y+(3/4)π^2*y^2]dy
=y-y^2+(3/4)π^2*(1/3)y^3:(0→1)
=1-1+(3/4)π^2*1/3
=(1/4)π^2
而∫(L2)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy
=∫(L2)0dx
=0
于是∫(L⁻)+∫(L1)+∫(L2)=∮(L⁻+L1+L2)
∫(L⁻)+(1/4)π^2+0=0
∫(L⁻)=-(1/4)π^2
∫(L)=(1/4)π^2
即原式∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy=(1/4)π^2