当前位置 :
用数学归纳法证明;(n-1)^3+n^3+(n+1)^3能被9整除
1人问答
问题描述:

用数学归纳法证明;(n-1)^3+n^3+(n+1)^3能被9整除

孙钰回答:
  n=1时,0^3+1^3+2^3=9能被9整除;n=2时,1^3+2^3+3^3=36能被9整除;.可知假设当n=a时,f(a)=(a-1)^3+a^3+(a+1)^3能被9整除,那么当n=a+1时,f(a+1)=a^3+(a+1)^3+(a+2)^3=f(a)+(a+2)^3-(a-1)^3=f(a)+(a^3+6a^2+12a+8)-(a^3-3a^2+3a-1)=f(a)+9*(a^2+a+1)前项可被9整除,后项也可以被9整除
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞