当前位置 :
已知a^2+a=2,求a^2003+a^2002-a^2001+a^2000+a^1999-a^1998+...+a^1982+a^1981-a^1980的值
1人问答
问题描述:

已知a^2+a=2,求a^2003+a^2002-a^2001+a^2000+a^1999-a^1998+...+a^1982+a^1981-a^1980的值

曹丽萍回答:
  a^2003+a^2002-a^2001=(a^2+a-2)a^2001+a^2001=a^2001.   依此类推,所求式可化为a^2001+a^1998+...+a^1980.   由a^2+a=2可以解得a=1或-2.   代入a=1得8.   代入a=-2,由等比数列求和得2^1980·((-8)^8-1)/(-8-1)=-2^1980·(2^24-1)/9=-1864135·2^1980.   有点怀疑题目条件写错了,如果是a^2+a=1答案会更整齐(一定为0).
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞