当前位置 :
【如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成】
1人问答
八字精批流年运程八字合婚八字起名
问题描述:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

孟繁增回答:
  (1)对于线面平行的证明,主要是分析借助于中位线来得到AM∥OE(2)60º(3)P是AC的中点   试题分析:解法一:(1)记AC与BD的交点为O,连接OE,∵O、M分别是AC、EF的中点,ACEF是矩形,∴四边形AOEM是平行四边形,∴AM∥OE.∵平面BDE,平面BDE,∴AM∥平面BDE.……4分(2)在平面AFD中过A作AS⊥DF于S,连结BS,∵AB⊥AF,AB⊥AD,∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,由三垂线定理得BS⊥DF.∴∠BSA是二面角A—DF—B的平面角.在RtΔASB中,∴∴二面角A—DF—B的大小为60º.……8分(3)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,∵PQ⊥AB,PQ⊥AF,,∴PQ⊥平面ABF,平面ABF,∴PQ⊥QF.在RtΔPQF中,∠FPQ=60º,PF=2PQ.∵ΔPAQ为等腰直角三角形,∴又∵ΔPAF为直角三角形,∴,∴所以t=1或t=3(舍去),即点P是AC的中点.……12分解法二:(1)建立空间直角坐标系.设,连接NE,则点N、E的坐标分别是(、(0,0,1),∴, 又点A、M的坐标分别是,(∴ =(∴且NE与AM不共线,∴NE∥AM.又∵平面BDE,平面BDE,∴AM∥平面BDE.(2)∵AF⊥AB,AB⊥AD,AF∴AB⊥平面ADF.∴为平面DAF的法向量.∵=(·=0,∴=(·=0得,,∴NE为平面BDF的法向量.∴cos<=∴AB与NE的夹角是60º.即所求二面角A—DF—B的大小是60º.(3)设P(t,t,0)(0≤t≤)得∴=(0,,0)又∵PF和BC所成的角是60º.∴解得或(舍去),即点P是AC的中点.点评:解决的关键是根据线面平行的判定定理,以及空间的法向量来求解二面角的平面角的大小,属于中档题。
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞
复制重新加载
原创不易,您的支持将成为鼓励我的动力
《【如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成】|小学数学问答-字典翻译问答网》
1、付费复制方式
支付宝付费后即可复制当前文章
限时特价:5.99元
原价:20元
打开支付页
2、微信付费复制方式
微信扫码付费后即可复制当前文章
限时特价:5.99元
原价:20元