当前位置 :
【一道高二立体几何~在空间四边形ABCD中,各边长均为1,且对角线AC=BD=1,点M,P分别是AD,CD的中点,点N,Q分别是三角形BCD,三角形ABC的中心,求直线MN与PQ所成角的余弦值】
2人问答
问题描述:

一道高二立体几何~

在空间四边形ABCD中,各边长均为1,且对角线AC=BD=1,点M,P分别是AD,CD的中点,点N,Q分别是三角形BCD,三角形ABC的中心,求直线MN与PQ所成角的余弦值

刘卫国回答:
  建议用坐标法.由于六条边均为1,将其看为正四面体.同时为了建立坐标方便,且便于计算,将边长扩大至根号3.以BCD中心N为坐标原点,ND为x轴,则NA为z轴.通过计算各个点坐标为:A(0.0.根号2),B(-1/2,2分之根号3,0)D(0,1...
李元明回答:
  有没有其他的方法~我们既没有教向量法又没有教坐标法
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞