数学中的
e
e
≈
2.71828
18284
59045
23536
02874
71352
66249
77572
47093
69995
95749
669676277240766303535475945713821785251664274
现在人们可以将它精确到小数点后
2000
位,
这里的
e
是一个数的代表符号,
而我们要说的,
便是
e
的故事.这倒叫人有点好奇了,
要能
说成一本书,
这个数应该大有来头才是,
至少应该很有名吧?但是搜索枯肠,
大部分人能想
到的重要数字,
除了众人皆知的
及
1
外,
大概就只有和圆有关的
π
了,
了不起再加上虚数
单位的
i=
√
-1
.这个
e
究竟是何方神圣呢?
在高等数学里,大家都学到过对数(
logarithm
[
ˈ
l
ɔ
:g
əˌ
r
ɪ
ð
ə
m
]
)的观念,也用过对数表.教科书
里的对数表,是以
10
为底的,叫做常用对数(
commonlogarithm
)
.课本里还提到,有一种
以无理数
e=2.71828
……为底数的对数,称为自然对数(
natural
logarithm
)
,有一个著名的
极限数列或函数
f(n)=(1+1/n)^n
当
n→∞
时
=e
的结果就是
e
,这里的
e
,正是我们故事的主
角.不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,
难道会比以
10
为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可
说呢?
这就要从古早时候说起了.
至少在微积分发明之前半个世纪,
就有人提到这个数,
所以虽然
它在微积分里常常出现,却不是随著微积分诞生的.那麼是在怎样的状况下导致它出现的
呢?一个很可能的解释是,这个数和计算利息有关.
我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息.但是本利和的多寡,
要看计息周期而定,
以一年来说,可以一年只计息一次,
也可以每半年计息一次,
或者一季
一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高.有人因此而好奇,
如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,
或者每一瞬间(理论上来
说)
,会发生什麼状况?
本利和会无限制地加大吗?答案是不会,
它的值会稳定下来,
趋近於一极限值,
而
e
这个数
就现身在该极限值当中(当然那时候还没给这个数取名字叫
e
)
.所以用现在的数学语言来
说,
e
可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此
e
的值应该是
观察出来的,而不是用严谨的证明得到的.
包罗万象的
e
大家恐怕已经在想,
光是计算利息,
应该不至於能专门为一个奇怪的数值起个名字吧?当然
不,利息只是极小的一部分.令人惊讶的是,
这个与计算复利关系密切的数,居然和数学领
域不同分支中的许多问题都有关联.
在讨论
e
的源起时,
除了复利计算以外,
事实上还有许
多其他的可能.
问题虽然都不一样,
答案却都殊途同归地指向
e
这个数.
比如其中一个有名
的问题,就是求双曲线
y=1
/x
底下的面积.双曲线和计算复利会有什麼关系,不管横看、竖
看、坐著想、
躺著想,
都想不出一个所以然对不对?可是这个面积算出来,却和
e
有很密切
的关联.
e
是一个奇妙有趣的无理数,
它取瑞士数学家欧拉
Euler
的英文字头.
欧拉首先发现此数并
称之为自然数.它还有个较鲜见的名字叫纳皮尔
Napier
常数,假如你曾在数学课上被对数
苦恼过,
一定想知道谁是
「始作俑者」吧?没错,就是这位