预付年金现值怎么计算
以普通年金10000元,年利率10%,3年期为例:
其终值为:
S=10000+10000×(1+10%)+10000×(1+10%)^2=33100(公式:Ax{[(1+i)^n-1/i]})
其现值为:
P=10000÷(1+10%)+10000÷(1+10%)^2+10000÷(1+10%)^3=24868.5(Ax{[1-(1÷(1/(1+i)^n))/i})
预付年金是同样的道理:
预付年金终值S=S=10000×(1+10%)+10000×(1+10%)^2+10000×(1+10%)^3=36410(Ax{[(((1+i)^n+1)-1)/i}
预付年金现值F=(Ax{[1-(1÷(1/(1+i)^n))/i-1})
如果是F=10000÷(1+10%)+10000÷(1+10%)^2+10000÷(1+10%)^3+10000÷(1+10%)^4=31698.5为什么和公式算的结果不一样?
预付年金终值S=S=10000×(1+10%)+10000×(1+10%)^2+10000×(1+10%)^3=36410上边少打了减1(Ax{[(((1+i)^n+1)-1)/i]-1}=10000X3.641(4.641-1)=36410