当前位置 :
关于离散数学平面图的两个问题.答得好的话会有加分哦!1、设G是一个没有三角形的平面图.应用欧拉公式证明G中有一个顶点v,使得degv≤3.2、设G是一个没有三角形的平面图.应用数学归纲法证
1人问答
问题描述:

关于离散数学平面图的两个问题.答得好的话会有加分哦!

1、设G是一个没有三角形的平面图.应用欧拉公式证明G中有一个顶点v,使得degv≤3.

2、设G是一个没有三角形的平面图.应用数学归纲法证明G是4-可着色的.

孙朝阳回答:
  1.证明:采用反证法,设G中所有顶点的度数>=4.   设G中的顶点数为V,边数为E,面数为F则   则根据欧拉公式V-E+F=2.   又因为G是一个没有三角形的平面图,所以G中的每一个面至少由4条边组成(G中只有少于4条边的情况不用考虑,因为这种图形必然满足结论),因此4F
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞