第一个问题:
∵y=c1×e^x+c2×e^(2x),∴y′=c1×e^x+2c2×e^(2x),y″=c1×e^x+4c2×e^(2x).
∴y″-3y′+2y
=[c1×e^x+4c2×e^(2x)]-3[c1×e^x+2c2×e^(2x)]+2[c1×e^x+c2×e^(2x)]
=(c1×e^x-3c1×e^x+2c1×e^x)+[4c2×e^(2x)-6c2×e^(2x)+2c2×e^(2x)
=0.
∴y=c1×e^x+c2×e^(2x)是微分方程y″-3y′+2y=0的通解.
第二个问题:
令y=c1×e^x+c2×e^(2x)中的x=0,得:c1×e^0+c2×e^0=c1+c2=0.
令y′=c1×e^x+2c2×e^(2x)中的x=0,得:c1×e^0+2c2×e^0=c1+2c2=1.
联立:c1+c2=0、c1+2c2=1,容易得出:c1=-1、c2=1.
∴满足条件的微分方程的特解是:y=-e^x+e^(2x).