当前位置 :
数学归纳法证明(a1+a2+.+an)^2=a1^2+a2^2+.+an^2+2(a1a2+a1a3+.+a(n-1)*an).(n大于等于2)
1人问答
问题描述:

数学归纳法证明(a1+a2+.+an)^2=a1^2+a2^2+.+an^2+2(a1a2+a1a3+.+a(n-1)*an).(n大于等于2)

秦玥回答:
  当n=2时,(a1+a2)^2=a1^2+a2^2+2a1a2,等式成立设n=k时,则(a1+a2+.+ak)^2=a1^2+a2^2+.+ak^2+2(a1a2+a1a3+.+a(k-1)*ak).(k=>2)当n=k+1时,(a1+a2+.+ak+a(k+1))^2=a(k+1)^2+2(a1+a2+.+ak)*a(k+1)+(a1+a2+.+ak)^2因为(a1+a...
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞