当前位置 :
用数学归纳法证明:1+n/2≤1+1/2+1/3+```+1/2^n≤1/2+n刚学,不太明白
1人问答
问题描述:

用数学归纳法证明:1+n/2≤1+1/2+1/3+```+1/2^n≤1/2+n

刚学,不太明白

路尚书回答:
  用缩放说f(n)=1+1/2+1/3+...+1/(2^n)-1-n/2g(n)=1+1/2+1/3+...+1/(2^n)-1/2-nf(1)=1+1/2-1-1/2=0若f(n)≥0f(n+1)=1+1/2+1/3+...+1/(2^n)-1-n/2+1+n/2-1-(n+1)/2+1/(2^n+1)+…1/2^(n+1)而f(n)≥01/(2^n+1)+…1/2^(n+1)≥[2^(n+1)-2^n-1+1]/2^(n+1)=1/2f(n+1)≥0同理:g(n)≤0不过这解题过程我没看懂
数学推荐
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞