当前位置 :
请问导函数在某一点连续与否是否会影响原函数的可导性呢?按照原函数可导的定义的充要条件是函数的左右导数存在且相等,那么只要导函数连续的话,某一点的左右导数肯定是相等的,进而推
1人问答
问题描述:

请问导函数在某一点连续与否是否会影响原函数的可导性呢?按照原函数可导的定义的充要条件是函数的左右导数存在且相等,那么只要导函数连续的话,某一点的左右导数肯定是相等的,进而推出原函数在某一点可导,如果导函数在一点不连续,只要不是可去间断点,则原函数在这一点一定不可导,对么?

我室友说导函数的连续性和可导性和原函数完全无关,所以我上面说得全是错的,对不呢?

宫先仪回答:
  首先,你的问题是存在争议的:什么叫导函数的性质影响其原函数的可导性?这是一个因果问题,函数要可导,才有导函数;如果都存在有导函数了,那么原函数就是可导的,那根本就不是一个问题,因果别弄混;这个问题应该这样提...
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞