当前位置 :
【在平面直角坐标系中,已知△ABC的顶点A(0,-2),C(0,2),顶点B在椭圆y^2/12+x^2/8=1上,则(sinA+sinC)/sinB的值是?】
1人问答
问题描述:

在平面直角坐标系中,已知△ABC的顶点A(0,-2),C(0,2),顶点B在椭圆y^2/12+x^2/8=1上,则(sinA+sinC)/sinB的值是?

蒋毅回答:
  椭圆y^2/12+x^2/8=1焦点坐标A(0,-2),C(0,2),   B在椭圆上   BA/sinC=BC/sinA=AC/sinB=t   BA=t*sinCBC=t*sinAAC=t*sinB   (sinA+sinC)/sinB   =(BC+BA)/AC   =2a/2c   =a/c   =2√3/2   =√3
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞