甲:1,乙:2
V1>V2,
s1>s2,
a1>a2,
p1=w1/s1=p2=w2/s2,
s1>s2,所以w1>w2;
令a1=a2+k,
s1-s2=a1*a1-a2*a2
=(a2+k)*(a2+k)-a2*a2
=2a2*k+k*k
s1=s2+2a2*k+k*k.(1)
沿竖直方向切去厚度(x)相等的部分放在各自上方(未切完),此时w1'=w1,w2'=w2,
s1'-s2'=(a1-x)*a1-(a2-x)*a2
=(a2+k-x)*(a2+k)-a2*a2+x*a2
=2a2*k+k*k-xk
s1'=s2'+2a2*k+k*k-xk...(2)
比较(1)与(2),xk>0,所以:
s1'-s2'比s1-s2数值更小,而w1'=w1,w2'=w2.因此p1'>p2'.