√(1-sinx)/(1+sinx)-√(1+sinx)/(1-sinx)
=(sin(x/2)-cos(x/2))/(sin(x/2)+cos(x/2))-(sin(x/2)+cos(x/2))/(sin(x/2)-cos(x/2))
=[(sin(x/2)-cos(x/2))^2-(sin(x/2)+cos(x/2))^2]/(sin(x/2)^2-cos(x/2)^2)
=2*sinx/cosx
√(1-cosx)/(1+cosx)-√(1+cosx)/(1-cosx)
=sin(x/2)/cos(x/2)-cos(x/2)/sin(x/2)
=(sin(x/2)^2-cos(x/2)^2)/(sin(x/2)*cos(x/2))
=-cosx/(1/2*sinx)
=-2*cosx/sinx
以上两式均没考虑符号问题,即说明上式均可取相反数
两式相乘得-4,即也可能取到4
因为上式没讨论,讨论的话也简单,sinx,cosx与0比较即可