当前位置 :
【设x是n维非零实列向量,矩阵A=E+xxT,(n>=3),证明:A恰有n-1个特征值为一“这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不为0”怎么来的?】
1人问答
问题描述:

设x是n维非零实列向量,矩阵A=E+xxT,(n>=3),证明:A恰有n-1个特征值为一

“这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不为0

”怎么来的?

李海鹰回答:
  具体地说,xxT可以看成(x1x,x2x.xnx),极大线性无关组只有一个,所以秩是1   笼统的说,矩阵的秩代表矩阵中线性无关的向量的个数,xxT这个矩阵是由一个x向量衍生而来的,所以秩是1
数学推荐
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞