f(x)=sin(πx/2+π/3)+cos(πx/2+π/6)
=sin(πx/2+π/3)+sin[π/2-(πx/2+π/6)]
=sin(πx/2+π/3)+sin(π/3-πx/2)
=2cos(πx/2)sin(π/3)
=√3cos(πx/2)
又,cos(π/2)+cos(2π/2)+cos(3π/2)+cos(4π/2)=0
所以,f(1)+f(2)+f(3)+f(4)=0
因为,cosx的周期为2π
所以,连续4个f(x)的和为0
由,2007=4×501+3
所以,f(1)+f(2)+······+f(2007)=f(2005)+f(2006)+f(2007)=f(1)+f(2)+f(3)
而,f(1)+f(2)+f(3)=√3[cos(π/2)+cos(2π/2)+cos(3π/2)]=-√3
所以,f(1)+f(2)+······+f(2007)=-√3