解答(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,
∴△BCE≌△DCF,
∴∠FDC=∠EBC,
∵BE平分∠DBC,
∴∠DBE=∠EBC,
∴∠FDC=∠DBE,
∵∠DGE=∠DGE,
∴△BDG∽△DEG.
∵△BCE≌△DCF,
∴∠F=∠BEC,∠EBC=∠FDC,
∵四边形ABCD是正方形,
∴∠DCB=90°,∠DBC=∠BDC=45°,
∵BE平分∠DBC,
∴∠DBE=∠EBC=22.5°=∠FDC,
∴∠BDF=45°+22.5°=67.5°,
∠F=90°-22.5°=67.5°=∠BDF,
∴BD=BF,
∵△BCE≌△DCF,
∴∠F=∠BEC=67.5°=∠DEG,
∴∠DGB=180°-22.5°-67.5°=90°,
即BG⊥DF,
∵BD=BF,
∴DF=2DG,
∵△BDG∽△DEG,BG×EG=4,
∴
DG比EG=BG比DG,
∴BG×EG=DG×DG=4,
∴DG=2,
∴BE=DF=2DG=4.
如果有新问题记得要在新页面提问