当前位置 :
f(x)在[-1,1]连续,证明∫∫f(x+y)dxdy=∫[-1,1]f(t)dt,D:|x|+|y|≤1.
1人问答
问题描述:

f(x)在[-1,1]连续,证明∫∫f(x+y)dxdy=∫[-1,1]f(t)dt,D:|x|+|y|≤1.

毛坚桓回答:
  以y轴分为界线,将区域为分两部分,左边为D1,右边为D2当积分区域为D1时:∫∫f(x+y)dxdy=∫[-1---->0]dx∫[-1-x---->1+x]f(x+y)dy对内层积分换元令x+y=t,则dy=dt,t:-1--->2x+1=∫[-1---->0]dx∫[-1---->2x+1]f(...
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞