当前位置 :
【数列{an}的前n项和为Sn,且对任意的n∈N*都有Sn=2an-n(1)猜想数列{an}的通项公式an,并用数学归纳法证明(2)求证:对任意n∈N*都有1/(a2-a1)+1/(a3-a2)+1/(a4-a3)+……+1/.(an+1-an)】
1人问答
问题描述:

数列{an}的前n项和为Sn,且对任意的n∈N*都有Sn=2an-n

(1)猜想数列{an}的通项公式an,并用数学归纳法证明

(2)求证:对任意n∈N*都有1/(a2-a1)+1/(a3-a2)+1/(a4-a3)+……+1/.(an+1-an)

曹洪权回答:
  (1)当n=1时,a1=1;   当n>=2时,Sn-2S(n-1)=n   S(n-1)-2S(n-2)=n-1   可求出an=2*n-1(2*n表示2的n此方)   (2)通项是1/(an+1-an)=1/an=2*(n-1)-1   然后用放缩法即可求出
数学推荐
最新更新
优秀数学推荐
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞