x^2*f′(x)+2xf(x)=e^2/x,即f′(x)+(2/x)f(x)=e^2/x^3,是一阶线性微分方程,
f(x)=e^[-∫(2/x)dx]{∫(e^2/x^3)e^[∫(2/x)dx]dx+C}
=(1/x^2)][∫(e^2/x^3)x^2dx+C]
=(1/x^2)][∫(e^2/x)dx+C]
=(1/x^2)](e^2*lnx+C).
f(2)=(1/4)(e^2*ln2+C)=e^2/8,C=-(e^2/2)(2ln2-1)
f(x)=[e^2*lnx-(e^2/2)(2ln2-1)]/x^2.
f'(x)={e^2-2[e^2*lnx-(e^2/2)(2l2-1)]}/x^3=2e^2(ln2-lnx)/x^3
令f'(x)=0,当x>0时,得惟一可疑极值点x=2,
f''(x)=2e^2(3lnx-3ln2-1)/x^4,f''(2)=-2e^2/16