(1)f(x)=2sinxcosx+√3(2cos²x-1)=sin(2x)+√3cos(2x)=2×[1/2×sin(2x)+√3/2×cos(2x)]
=2×[sin(2x)cos60º+sin60ºcos(2x)]=2sin(2x+60º)
(2)f(x)=1/2cos²x-sinxcosx-1/2sin²x=1/2(cos²x-sin²x)-1/2×2sinxcosx
=1/2×[cos(2x)-sin(2x)]=√2/2×[√2/2cos(2x)-√2/2sin(2x)]=√2/2cos(2x+45º)