正态分布的概率不是固定的.1、正态分布是概率论中最重要的一种分布,也是自然界最常见的一种分布.该分布由两个参数——平均值和方差决定.概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近.2、正态分布是具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ^2).服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散.正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点.它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线.当μ=0,σ^2=1时,称为标准正态分布,记为N(0,1).