复数是形如a+bi的数.式中a,b为实数,i是一个满足i^2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数.
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位.当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数.由上可知,复数集包含了实数集,因而是实数集的扩张.
复数有多种表示形式,常用形式z=a+bi叫做代数式.此外有下列形式.
①几何形式.复数z=a+bi用直角坐标平面上点Z(a,b)表示.这种形式使复数的问题可以借助图形来研究.也可反过来用复数的理论解决一些几何问题.
②向量形式.复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示.这种形式使复数的加、减法运算得到恰当的几何解释.
③三角形式.复数z=a+bi化为三角形式
z=|z|(cosθ+isinθ)式中|z|=,叫做复数的模(或绝对值);θ是以x轴为始边;向量OZ为终边的角,叫做复数的辐角.这种形式便于作复数的乘、除、乘方、开方运算.
④指数形式.将复数的三角形式z=|z|(cosθ+isinθ)中的cosθ+isinθ换为eiq,复数就表为指数形式
z=|z|eiq,复数的乘、除、乘方、开方可以按照幂的运算法则进行.
复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复数不能建立大小顺序.