√x+(1/√x)=3,求[x^(2/3)+1/x^(3/2)+2]/[x²+(1/x²)+3]之值.
∵√x+(1/√x)=3,∴两边三次方后得[√x+(1/√x)]³=x^(3/2)+3x(1/√x)+3(√x)(1/x)+1/x^(3/2)
=x^(3/2)+1/x^(3/2)+3x^(1/2)+3x^(-1/2)=x^(3/2)+1/x^(3/2)+3(√x+1/√x)
=x^(3/2)+1/x^(3/2)+9=27,故x^(3/2)+1/x^(3/2)=18;
又(√x+1/√x)²=x+2+(1/x)=9,故x+1/x=7,再平方得x²+2+1/x²=49,故x²+(1/x²)=47;
∴[x^(2/3)+1/x^(3/2)+2]/[x²+(1/x²)+3]=(18+2)/(47+3)=20/50=2/5.