首先将[1,4]切开为n个区间
每个区间的底长Δx=(4-1)/n=3/n
第k个区间是[(k-1)/n,k/n]
选取一点ξ_k=1+3k/n,k∈Z+
所以∫(1→4)f(x)dx
=lim(n→+∞)Σ(k=1→n)f(ξ_k)(Δx_k)
=lim(n→+∞)(3/n)Σ(k=1→n)f(1+3k/n)
=lim(n→+∞)(3/n)Σ(k=1→n)[3(1+3k/n)+2]
=lim(n→+∞)(3/n)Σ(k=1→n)(5+9k/n)
=lim(n→+∞)(3/n)[5Σ(k=1→n)+9/nΣ(k=1→n)k]
=lim(n→+∞)(3/n)[5n+(9/n)•n(n+1)/2]
=lim(n→+∞)(3/n)(19n/2+9/2)
=lim(n→+∞)[57/2+27/(2n)]
=57/2