sinx=2sin(x/2)cos(x/2)=2tan(x/2)cos^2(x/2);
cosx=cos^2(x/2)-sin^2(x/2)=(1-tan^2(x/2))cos^2(x/2);
tanx=2tan(x/2)/(1-tan^2(x/2));
cos^2(x/2)+sin^2(x/2)=1;
1+tan^2(x/2))=1/cos^2(x/2);
故cos^2(x/2)=1/(tan^2(x/2)+1),代入
得sinx=2tan(x/2)cos^2(x/2)=2tan(x/2)/(tan^2(x/2)+1)
cosx=(1-tan^2(x/2))cos^2(x/2)=(1-tan^2(x/2))/(tan^2(x/2)+1)
cotx=1/tanx=(1-tan^2(x/2))/(2tan(x/2))