1.∵向量a=(1,COS2θ),b=(2,1),c=(4SINθ,1),d=(1/2SINθ,1),θ∈(0,Л/4)
向量a•向量d-向量c•向量d=1/2sinθ+cos2θ-2(sinθ)^2-1
=1/2sinθ-4(sinθ)^2
设f(θ)=1/2sinθ-4(sinθ)^2,
令f’(θ)=1/2cosθ-8sinθcosθ=0
Cosθ=0==>θ1=2kπ-π/2,θ2=2kπ+π/2
f(-π/2)=-1/2-4=-5.5,f(π/2)=1/2-4=-3.5
Sinθ=1/16==>θ3=2kπ+arcsin(1/16),θ4=(2k+1)π-arcsin(1/16)
f(arcsin(1/16))=1/32-1/64=1/64,f(π-arcsin(1/16))=1/64
∴a*d-c*d的取值范围为[-5.5,1/64]
2.向量a•向量d=1/2sinθ+cos2θ=1/2sinθ+1-2(sinθ)^2
向量c•向量d=2(sinθ)^2+1
设f(x)=|x-1|
F(向量a•向量d)=|1/2sinθ-2(sinθ)^2|
F(向量c•向量d)=|2(sinθ)^2|
设g(x)=1/2sinx-2(sinx)^2,g’(x)=1/2cosx-4sinxcosx=0
Cosx=0==>x1=2kπ-π/2,x2=2kπ+π/2
g(-π/2)=-1/2-2=-2.5,f(π/2)=1/2-2=-1.5
Sinx=1/8==>x3=2kπ+arcsin(1/8),x4=(2k+1)π-arcsin(1/8)
g(arcsin(1/8))=1/16-1/32=1/32,f(π-arcsin(1/16))=1/32
∴g(x)的值域为[-2.5,1/32]
令g(x)=1/2sinx-2(sinx)^2=0
Sinx=0==>x1=2kπ,x2=(2k+1)π
Sinx=1/4==>x3=2kπ+arcsin(1/4),x4=(2k+1)π-arcsin(1/4)
∴当x∈(2kπ,2kπ+arcsin(1/4))∪((2k+1)π-arcsin(1/4),(2k+1)π)时,g(x)>0;
1/2sinx>2(sinx)^2
F(向量a•向量d)-F(向量c•向量d)=1/2sinθ-4(sinθ)^2