设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n
设A为n阶方阵,A*为A的伴随矩阵,证明
r(A*)=n----------r(A)=n
r(A*)=1----------r(A)=n-1
r(A*)=0----------r(A)