当前位置 :
设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.
1人问答
问题描述:

设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.

汤文军回答:
  由已知,A^T(1,1,...,1)^T=a(1,...,1)^T即a是A^T的特征值,(1,...,1)^T是A的属于特征值a的特征向量所以a^m是(A^T)^m的特征值,(1,1,...,1)是(A^T)^m的属于特征值a^m的特征向量因为(A^T)^m=(A^m)^T所以有...
数学推荐
最新更新
优秀数学推荐
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞