当前位置 :
已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=52.①求该抛物线的函数解析式;②把该抛物线沿
1人问答
问题描述:

已知抛物线y=(x-m)2-(x-m),其中m是常数.

(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;

(2)若该抛物线的对称轴为直线x=52.

①求该抛物线的函数解析式;

②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.

李翠艳回答:
  (1)证明:y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,   ∵△=(2m+1)2-4(m2+m)=1>0,   ∴不论m为何值,该抛物线与x轴一定有两个公共点;   (2)①∵x=--(2m+1)2
最新更新
热门数学
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞