用拉格朗日乘数法,求条件极值,
设函数F(x,y)=ln(xy^2)+λ(9x^2+3y^2-8)
∂F/∂x=y^2/(xy^2)+18λx
=1/x+18λx=0,
λ=-1/(18x^2),(1)
∂F/∂y=2xy/(xy^2)+6λy
=2/y+6λy=0,
λ=-1/(3y^2),(2)
对比(1)和(2)式,消去参数λ,
y^2=6x^2,
与方程9x^2+3y^2=8联立,
x=2√6/9,
y=4/3,
由问题可知,是求最大值,
∴f(x,y)(max)=ln[(2√6/9)*(4/3)^2]
=ln(32√6/9).