因为sina=3/5,a属于(π/2,π)
所以cosa=-4/5
(1)cos(a-π/4)=cosa*cosπ/4+sina*sinπ/4=-根号2/10;
(2)sin(a/2)的平方+tan(a+π/4)
=(-1/2)乘[-2sin(a/2)的平方]+(tana+1)/(1-tana)
=(1/2)-(1/2)乘[1-2sin(a/2)的平方]+[(sina/cosa)+1]/[1-(sina/cosa)]
=(1/2)-(1/2)乘cosa+(sina+cosa)/(cosa-sina)
=(1/2)+(1/2)乘(4/5)+[(3/5)-(4/5)]/[-(4/5)-(3/5)]
=73/70
不知道对不对.