当前位置 :
同角三角函数的基本关系习题已知2+1tan^2θ=1+sinθ,求证:(1+sinθ)(2+cosθ)=4
1人问答
问题描述:

同角三角函数的基本关系习题

已知2+1tan^2θ=1+sinθ,求证:(1+sinθ)(2+cosθ)=4

林新回答:
  证:已知:2+1/(tanθ)^2=1+sinθ对其变形、整理,有:1+[(cosθ)^2]/(sinθ)^2=sinθ(sinθ)^2+(cosθ)^2=(sinθ)^3(sinθ)^3=1解得:sinθ=1,因此:cosθ=0将其代入所要证明的式子,有:(1+sinθ)(2+cosθ)=(1+1)(2+...
最新更新
PC端 | 移动端 | mip端
字典翻译(zidianfy.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
电话:  邮箱:
Copyright©2009-2021 字典翻译 zidianfy.com 版权所有 闽ICP备2022014709号-7
lyric 頭條新聞