【分析】(1)由题意知an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),故,所以存在,使得数列{an+λn2+μn}是等比数列.
(2)由题意得bn=2n-1,要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,则有c=-1,所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立.
(3)由题意知,,所以…,由此可证明Tn(n≥2).
(1)设an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),
即an+1=2an+λn2+(μ-2λ)n-λ-μ,
故,得,
又a1-12+1≠0,
所以存在,使得数列{an+λn2+μn}是等比数列;
(2)由(1)得an-n2+n=(a1-12+1)•2n-1,
得an=2n-1+n2-n,所以bn=2n-1,Sn=2n-1,
要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,
则有${((S_(n)-c)(S_(n+2)-c)=(S_(n+1)-c)^(2)),(S_(n)-c>0):},得c=-1,
所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立;
(3)证明:因为an=2n-1+n2-n,
所以,
而$c_{n}=frac{1}{n^2}ltfrac{1}{n^{2}-frac{1}{4}}=frac{1}{n-frac{1}{2}}-frac{1}{n+frac{1}{2}}
所以T_{n}=c_{1}+c_{2}+…+c_{n}lt1+frac{2}{3}-frac{1}{n+frac{1}{2}}ltfrac{5}{3}(n≥2)
又当n=2时,T_{2}=frac{5}{4}>frac{4}{5}
当n≥3时,c_{n}=frac{1}{n^2}>frac{1}{n}-frac{1}{n+1}
得T_{n}=c_{1}+c_{2}+…+c_{n}>1-frac{1}{n+1}=frac{n}{n+1}>frac{n}{n+1}•frac{6}{2n+1}=frac{6n}{(n+1)(2n+1)}$;
综上,Tn(n≥2)得证.
【点评】本题考查数列的综合运用,解题时要认真审题,仔细解答.