如图1,点P是x轴上一动点,设其横坐标为h,将点P沿x轴向右平移两个单位得到点A,分别经过点P、A作x轴垂线,与直线y=-x+2交于点M、B,以点M为顶点的抛物线y=ax2+bx+c经过点B.(下图供参考)
(1)直接写出点M、点B的坐标(用含h的代数式表示);
(2)求a的值;
(3)点C(-2,0)是x轴上一定点,过点C作x轴垂线,分别与抛物线y=ax2+bx+c交于点F,与直线y=-x+2交于点E,点F在点E的上方或与点E重合.
①直接写出F、E的坐标,根据条件写出变量h的取值范围;
②设EF的长度为r.求r关于h的函数表达式,并求当r的值最大时,二次函数的解析式;
③连接PE、PB,如图2,设△PBE的面积为S,求S关于h的函数表达式,并判断S是否有最值?若有,请求出;若没有,说明理由.