(证明△DAM≌△MEN)不写没关系
理由如下:
(1)取AD中点F,连结MF,
由MN⊥DM得∠DAM=90°,
∴∠FDM=∠NMB,
又∵∠MNB=∠NBE-∠NMB=45°-∠NMB,
∠DMF=∠AFM-∠FDM=45°-∠FDM,
∴∠DMF=∠MNB,
又∵DF=BM,
∴△DMF≌△MNB,
∴MD=MN.
(2)成立,
在AD上取DF=MB,
∠FDM=90°-∠DMA,
又∠NMB+∠DMA=90°
∴∠FDM=∠NMB,
又∵∠DMF=45°-∠FDM,
∠MNB=45°-∠NMB,
∴∠DMF=∠MNB,
又DF=MB,
∴△DMF≌△MNB,
∴MD=MN
⊙√⊙
应该对吧!